Euler on the case n=3 of Fermat's Last Theorem - Continued

Using our knowledge about Dedekind domains, we prove that, whenever p and q are coprime integers, where p is even and not divisible by 3, then the number $2p(p^2+3q^2)$ is never a perfect cube.

Let $\omega=\frac{-1+i\sqrt{3}}{2}$ (a primitive cube root of unity). Then $K=\mathbb{Q}(\omega)=\mathbb{Q}\big(i\sqrt{3}\big)$ and its ring of integers is $D_K=\mathbb{Z}\bigg[\frac{1+i\sqrt{3}}{2}\bigg]=\mathbb{Z}[\omega]$. A basis of D_K over \mathbb{Z} is given by 1, ω , so that the

general form of its elements is $\frac{u+iv\sqrt{3}}{2}$, where u,v are integers such that $u\equiv v\pmod{2}$.

We show that D_K is a PID. We prove that $cl(D_K) = 1$. To this end, we consider the two embeddings $\sigma_1, \sigma_2 : K \to \mathbb{C}$ (where σ_1 is the identity) and compute the constant

$$C = \prod_{i=1}^{2} (|\sigma_i(1)| + |\sigma_i(\omega)|) = \left(1 + \left| \frac{-1 + i\sqrt{3}}{2} \right| \right) \left(1 + \left| \frac{-1 - i\sqrt{3}}{2} \right| \right) = 2 \cdot 2 = 4.$$

We thus have to consider the prime ideals occurring in the factorizations of the ideals (2) and (3). These factorizations can be determined using Kummer's Criterion. The minimal polynomial of ω over \mathbb{Q} is $f(x) = \Phi_3(x) = x^2 + x + 1$, irreducible modulo 2, whereas it splits as $(x - \overline{1})^2$ modulo 3. Hence

- (2) is prime in D_K ,
- $(3) = (3, \omega 1)^2 = (\omega 1)^2$ (because $3 = (\omega 1)(\overline{\omega} 1)$).

All prime ideals we found are principal, which immediately implies our claim.

Next we show that the numbers $p+q\sqrt{-3}$ and $p-q\sqrt{-3}$ are coprime in D_K . Suppose by contradiction that they have a common prime factor d in D_K . Then $d\mid 2p$, but $d\neq 2$, since d divides p^2+3q^2 , but 2 does not. Hence $d\mid p$. This, in turn, implies that d is not a prime factor of 3: otherwise p and p would not be coprime, against our assumption. On the other hand, $d\mid 3q^2$. Hence $d\mid q$. But this contradicts the coprimality of p, q.

As a consequence of our preceding claim, if the integer

$$p^2 + 3q^2 = \left(p + qi\sqrt{3}\right)\left(p - qi\sqrt{3}\right)$$

is a a perfect cube, its prime factorization in D_K splits (up to units) into the factorizations of two cubes. Namely, there are two numbers $s=\frac{u}{2}$ and $t=\frac{v}{2}$ where u,v are integers for which $u\equiv v\pmod 2$, such that

$$p + qi\sqrt{3} = \left(s + ti\sqrt{3}\right)^3 \tag{1a}$$

$$p - qi\sqrt{3} = \left(s - ti\sqrt{3}\right)^3 \tag{1b}$$

(It can be shown that we can neglect units other than 1, -1.) Note that (1b) follows from (1a) by applying σ_2 . This implies that

$$p^2 + 3q^2 = \left(s^2 + 3t^2\right)^3.$$

Hence, if $2p(p^2 + 3q^2)$ is a perfect cube, so is 2p. From (1a) and (1b) we also deduce that

$$2p = 2s(s+3t)(s-3t)$$
$$q = 3t(s+t)(s-t)$$

The integers 2s and s+3t are coprime. If this were not the case, then 2s and 3s+3t would have some common prime factor. This would not be 3, since 3 does not divide p. But then the same factor would divide s+t, so that p and q would not be coprime, against our assumption. It follows that 2s, s+3t and s-3t are coprime. Consequently, if 2p is a perfect square, so is each of these factors. But then the conclusion follows as in the previous note.